Gene editing strategy eliminates HIV-1 infection reservoir in live animals

Gene editing strategy eliminates HIV-1 infection reservoir in live animals

Prof Dr,DRAM,HIV /AIDS,HEPATITIS ,SEX DISEASES & WEAKNESS expert,New Delhi,India, +917838059592

A permanent cure for HIV infection remains elusive due to the virus's ability to hide away in latent reservoirs. But now, in new research published in print May 3 in the journal Molecular Therapy, scientists at the Lewis Katz School of Medicine at Temple University (LKSOM) and the University of Pittsburgh show that they can excise HIV DNA from the genomes of living animals to eliminate further infection. They are the first to perform the feat in three different animal models, including a "humanized" model in which mice were transplanted with human immune cells and infected with the virus.

The team is the first to demonstrate that HIV-1 replication can be completely shut down and the virus eliminated from infected cells in animals with a powerful gene editing technology known as CRISPR/Cas9.
The new work builds on a previous proof-of-concept study that the team published in 2016, in which they used transgenic rat and mouse models with HIV-1 DNA incorporated into the genome of every tissue of the animals' bodies. They demonstrated that their strategy could delete the targeted fragments of HIV-1 from the genome in most tissues in the experimental animals.

"Our new study is more comprehensive," Dr. Hu said. "We confirmed the data from our previous work and have improved the efficiency of our gene editing strategy. We also show that the strategy is effective in two additional mouse models, one representing acute infection in mouse cells and the other representing chronic, or latent, infection in human cells."

In the new study, the team genetically inactivated HIV-1 in transgenic mice, reducing the RNA expression of viral genes by roughly 60 to 95 percent, confirming their earlier findings. They then tested their system in mice acutely infected with EcoHIV, the mouse equivalent of human HIV-1.

Comments