Breakthrough Research of the Milenium : Scientists create mouse embryo Artificially-prof drram hiv/aids,hepatitis expert

 Breakthrough Research of the Milenium : Scientists create mouse embryo Artificially

PROF .DRRAM,HIV /AIDS,HEPATITIS ,SEX DISEASES & WEAKNESS expert,New Delhi,India, profdrram@gmail.com,+917838059592,+919832025033,ON WHATSAPP

Stem cells have the ability to transform into many different types of cells during the body's early development, embryonic stem cell research offers unique insights into how an organism grows from a single cell. For the first time, scientists have now been able to create a mouse embryo entirely artificially.
Researchers have modeled a mouse embryo, here shown at 72 hours, using exclusively stem cells.
Image credit: Berna Sozen-Kaya, Zernicka-Goetz Laboratory, University of Cambridge
Stem cells are crucial for the development of living organisms. At the very beginnings of an embryo, these cells will form the entire organism, including the cells that form the body's vital organs and tissues, such as the heart, lungs, and skin.
During its first 3 to 5 days, the human or mammalian embryo is called a blastocyst. The blastocyst is made up of embryonic stem cells (ESCs) that are generated by the egg after it has been fertilized by a sperm.
The blastocyst also contains trophoblast stem cells (TSCs), which will create the placenta, and primitive endoderm stem cells that will form the yolk sac - a membranous sac that provides nutrients to the developing embryo and forms before the placenta.
Researchers from the University of Cambridge in the United Kingdom, led by Prof. Magdalena Zernicka-Goetz from the Department of Physiology, Development, and Neuroscience, set out to genetically create a structure resembling a mouse embryo using exclusively ESCs and TSCs. The study was published in the journal Science.
Prof. Zernicka-Goetz and team used genetically modified ESCs and TSCs, as well as a 3-D extracellular matrix (ECM) - a noncellular component found in all tissues and organs that functions as a scaffolding for cells, and facilitates biochemical reactions that help cells to differentiate and morph into other organs and tissues.
Researchers found that the ESCs, TSCs, and the 3-D ECM "communicated" with each other and organized themselves into a self-assembling structure that had the properties of a natural embryo.
These insights are key to understanding the early stages of human development as well, as Dr. Andrew Chisholm - head of Cellular and Developmental Science at the Wellcome Trust - explains:
"This is an elegant study creating a mouse embryo in culture that gives us a glimpse into the very earliest stages of mammalian development," Dr. Chisholm says. "In theory, similar approaches could one day be used to explore early human development, shedding light on the role of the maternal environment in birth defects and health."
The Wellcome Trust and the European Research Council were the main funding bodies behind this research project.
Prof. Zernicka-Goetz has also worked on other projects which, together with this one, help advance the field of human embryo research. She recently achieved another breakthrough, by developing human embryos in vitro beyond the implantation stage for the first time. Prof. Zernicka-Goetz hopes that her research will help scientists to overcome one of the main obstacles in human embryo research: the insufficient number of embryos available.

Comments