HIV HAART MEdicines cuauses Shape-shifting molecule in CD4 cells binding to virus resulting tricks in viruses mutating themselves to death

HIV HAART MEdicines cuauses Shape-shifting molecule in CD4 cells binding to virus resulting tricks in viruses mutating themselves to death
PROF.DRRAM ,HIV/AIDS,SEX Diseases,Deaddiction & Hepatitis Expert
profdrram@gmail.com,+917838059592,+919832025033,DELHI,INDIA
HIV/ AIDS,CANCER MODERN MEDICINES AVAILABLE AT CHEAP RATE. 
FOLLOW ON FACE BOOK:www.facebook.com/ramkumar
FOLLOW ON TWITTER:www.twitter.com/profdrram
A newly developed spectroscopy method is helping to clarify the poorly understood molecular process by which an anti-HIV drug induces lethal mutations in the virus's genetic material. The findings from the University of Chicago and the Massachusetts Institute of Technology could bolster efforts to develop the next generation of anti-viral treatments.
Viruses can mutate rapidly in order to adapt to environmental pressure. This feature also helps them become resistant to anti-viral drugs. But scientists have developed therapeutic anti-viral agents for HIV, Hepatitis C, and influenza using a strategy called lethal mutagenesis.
This strategy seeks to extinguish viruses by forcing their already high mutation rates above an intolerable threshold. If viruses experience too many mutations, they can't properly manage their genetic material.
"They can't replicate and so are quickly eliminated," said Andrei Tokmakoff, the Henry G. Gale Distinguished Service Professor in Chemistry at UChicago. "In order to make this work, you need a stealth mutagen. You need something sneaky, something that the virus isn't going to recognize as a problem."
Tokmakoff and his associates at UChicago and MIT reported new details of the stealthy workings of the anti-HIV agent KP1212 last month in the Proceedings of the National Academy of Sciences. Supporting data were collected with two-dimensional infrared spectroscopy, an advanced laser technique that combines ultrafast time resolution with high sensitivity to chemical structure.
— with Sadanand Nadar and 19 others.
Like · Comment · 

Comments